Preview

Storage and Processing of Farm Products

Advanced search

Cavitation as an Alternative Method of Physical Action to Improve the Flavor Profile of Confectionery Semi-Finished Products

https://doi.org/10.36107/spfp.2024.1.501

Abstract

Introduction: Changing consumer preferences towards healthy eating and choosing confectionery products for quick snacks are stimulating the development of the healthy confectionery segment. Products based on vegetable raw materials, rich in pectins, vitamins, minerals, and dietary fibers, are gaining popularity in the confectionery industry. Modern trends in the food industry aim to produce food products that preserve native properties with minimal heat treatment, employing alternative technologies such as high pressure, pulsed electricity, magnetic fields, ultraviolet light, or acoustic energy.

Purpose: to determine the changes in the organoleptic parameters of a semi-finished confectionery product based on pumpkin puree under cavitation conditions to increase the flavor profile.

Materials and Methods: Objects of research: samples of pumpkin puree of industrial production, confectionery semi-finished products prepared in laboratory conditions by mixing pumpkin puree and sugar/invert syrup in the ratio 50:50. Cavitation treatment was carried out on the ultrasonic unit "Syrinx 250K", organoleptic evaluation was carried out by the tasting committee and on the device "Electronic nose" "VOCmeter", dispersibility was determined on the laser diffractometer "Beckman Coulter".

Results: After cavitation treatment with duration of 10 minutes the content of aromatic substances increased: low-molecular nitrogen-containing compounds - by 24,2%, free amino acids - 41,4%, ketones - 32%, at further treatment the content of aromatic substances decreases. The distribution of particles in pumpkin puree was characterized by the fact that the bulk of particles had a size of 50.2-153.8 μm, and particles with a size of 7-38 μm were less than 10%. The study of dispersibility of pumpkin semifinished products showed that particles with the size of 153.8 microns and more are destroyed during cavitation action.

Conclusion: The optimal duration of ultrasound exposure to confectionery semi-finished products is 10 minutes. The prospect of determination of markers of aromatic compounds for use of multisensor systems for identification of natural fruit and vegetable components in confectionery products has been revealed.

About the Authors

Tatyana Fedosenko
VNIIKP – Branch of V.M. Gorbatov Federal Research Center for Food Systems
Russian Federation


Larisa Aksenova
VNIIKP – Branch of V.M. Gorbatov Federal Research Center for Food Systems
Russian Federation


Mikhail Pesterev
VNIIKP – Branch of V.M. Gorbatov Federal Research Center for Food Systems
Russian Federation


Anna Zaharova
VNIIKP – Branch of V.M. Gorbatov Federal Research Center for Food Systems
Russian Federation


Lyubov Patsyuk
VNIIKP – Branch of V.M. Gorbatov Federal Research Center for Food Systems
Russian Federation


References

1. Askarniya Z., Sun X., Wang Z., Boczkaj G. (2023). Cavitation-based technologies for pretreatment and processing of food wastes: Major applications and mechanisms – A review - Chemical Engineering Journal, 454, https://doi.org/10.1016/j.cej.2022.140388

2. Bhargava N. et al. (2021). Advances in application of ultrasound in food processing: A review. - Ultrasonics sonochemistry, 70. https://doi.org/10.1016/j.ultsonch.2020.105293

3. Blake, F.G. (1949). The onset of cavitation in liquids. - I. Cavitation threshold sound pressures in water as a function of temperature and hydrostatic pressure. Acoustics Research Laboratory, Harvard Univ, 53

4. Bogdanova A. V., Kuznecova T. G., Ivankin A. N. (2012). Nanosensornyj analiz letuchih komponentov dlya differenciacii ob"ektov rastitel'nogo proiskhozhdeniya. Vestnik MGUL – Lesnoj vestnik, №7, 90. URL: https://cyberleninka.ru/article/n/nanosensornyy-analiz-letuchih-komponentov-dlya-differentsiatsii-obektov-rastitelnogo-proishozhdeniya (data obrashcheniya: 22.08.2023).

5. Carrillo-Lopez L. M. et al. (2021). Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. - Ultrasonics Sonochemistry, 73. https://doi.org/10.1016/j.ultsonch.2021.105467

6. Castro-Muñoz R., Boczkaj G., Jafari S. M. (2023). The role of hydrodynamic cavitation in tuning physicochemical properties of food items: A comprehensive review. - Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2023.03.010

7. CHernuha I.M., Kuznecova T.G., Anisimova I.G., Bogdanova A.V. (2011). Sensornye analiticheskie sistemy "elektronnyj nos" dlya sovershenstvovaniya kontrolya kachestva myasnogo syr'ya. - Pishchevaya promyshlennost', №4. URL: https://cyberleninka.ru/article/n/sensornye-analiticheskie-sistemy-elektronnyy-nos-dlya-sovershenstvovaniya-kontrolya-kachestva-myasnogo-syrya (data obrashcheniya: 17.08.2023)

8. CHesnokova N.YU., Kuznecova A.A., Kushnarenko L.V. (2023). Vliyanie uslovij izvlecheniya na ekstragirovanie antocianov iz yagodnogo syr'ya. - Vestnik KrasGAU, №8, 218-226.

9. Ciriminna R., Scurria A., Pagliaro M. (2023). Natural product extraction via hydrodynamic cavitation. - Sustainable Chemistry and Pharmacy, 33. https://doi.org/10.13140/RG.2.2.25391.82088/2

10. Donchenko L. V., Kondratenko V. V. (1998). Izmenenie soderzhaniya pektinovyh veshchestv tykvy pri sozrevanii i hranenii. - Izvestiya vuzov. Pishchevaya tekhnologiya, №1. URL: https://cyberleninka.ru/article/n/izmenenie-soderzhaniya-pektinovyh-veschestv-tykvy-pri-sozrevanii-i-hranenii (data obrashcheniya: 08.09.2023).

11. Dunchenko N. et al. (2023). Influence of acoustic cavitation on physico-chemical, organoleptic indicators and microstructure of Adyghe cheese produced from cow and goat milk. - Ultrasonics Sonochemistry. https://doi.org/106493. 10.1016/j.ultsonch.2023.106493

12. Gadzhieva A. M., Abasova Z. U., Murtazalieva Z. A. (2020). Innovacionnye resursosberegayushchie tekhnologii pererabotki tomatnogo syr'ya. - Biotekhnologicheskie, ekologicheskie i ekonomicheskie aspekty sozdaniya bezopasnyh produktov pitaniya specializirovannogo naznacheniya: Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii, Krasnodar, 22 maya 2020 goda. – Krasnodar: Kubanskij gosudarstvennyj tekhnologicheskij universitet, 63-73.

13. Golovkova, D. O., Diner YU.A. (2021). Sensornaya analiticheskaya sistema «elektronnyj nos» dlya analiza kachestva pishchevyh produktov. - Nauka molodyh - budushchee Rossii: sbornik nauchnyh statej 6-j Mezhdunarodnoj nauchnoj konferencii perspektivnyh razrabotok molodyh uchenyh, Kursk, 09–10 dekabrya 2021 goda. Tom 4. YUgo-Zapadnyj gosudarstvennyj universitet, 153-155.

14. Kondratenko V. V., Kondratenko T.YU. (2019). Osobennosti formirovaniya sorbcionnyh svojstv pektinovyh veshchestv iz raznyh vidov tykvy. -Vestnik YUzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Pishchevye i biotekhnologii, 7, 5-12.

15. Korenman YA. I., Antipova L. V., Kalach A. V. (i dr.). (2003). Identifikaciya SO2-ekstraktov pryanostej s primeneniem elektronnogo nosa. - Izvestiya vysshih uchebnyh zavedenij. Pishchevaya tekhnologiya, № 5-6, 123-126.

16. Kozyrev I. A., Bataeva D. S., Nasonova V. V. (2021). Mul'tisensornaya sistema "elektronnyj nos" dlya opredeleniya kachestva myasnyh produktov v processe hraneniya. - Pishchevye sistemy, 4, 142-147. https://doi.org/10.21323/2618-9771-2021-4-3S-142-147.

17. Lee, H., & Feng, H. (2011). Effect of power ultrasound on food quality. In Food Engineering Series (Food Engineering Series). Springer, 559-582. https://doi.org/10.1007/978-1-4419-7472-3_22

18. Lodygin A. D., Davydenko N. I. (2019). Razrabotka tekhnologii muchnogo konditerskogo izdeliya s ispol'zovaniem plodov tykvy. - Pishchevaya industriya, 2, 40. URL: https://cyberleninka.ru/article/n/razrabotka-tehnologii-muchnogo-konditerskogo-izdeliya-s-ispolzovaniem-plodov-tykvy (data obrashcheniya: 08.09.2023).

19. Magomedov G. O., Lobosova L. A., Petuhova, Selina N. A. (2019). Keksy s kislomolochnymi produktami dlya shkol'nikov - Elektronnyj setevoj politematicheskij zhurnal "Nauchnye trudy KubGTU", № S9, 370-377.

20. Neppiras, E.A. (1980). Acoustic cavitation thresholds and cyclic processes. Ultrasonics, 18, 201-209. https://doi.org/10.1016/0041-624X(80)90120-1

21. Nikitina S. YU., Kuchmenko T. A., Rudakov O. B., Drozdova E. V. (2015). Primenenie metodiki "Elektronnyj nos" dlya ocenki kachestva pishchevogo etanola - Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Himiya. Biologiya. Farmaciya, № 1. – 26-35.

22. Ovsepyan V., Hudaverdyan O. (2019). Izmenenie i soderzhanie askirbinovoj kisloty v nekotoryh ovoshchah pri hranenii i pererabotke. - Sciences of Europe. 2019. №39-1. URL: https://cyberleninka.ru/article/n/izmenenie-i-soderzhanie-askirbinovoy-kisloty-v-nekotoryh-ovoschah-pri-hranenii-i-pererabotke (data obrashcheniya: 06.09.2023).

23. Potoroko I. YU., Cirul'nichenko L. A. (2014). Formirovanie sensornyh harakteristik pishchevyh produktov pod vozdejstviem effektov sonohimii. - Vestnik YUzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Pishchevye i biotekhnologii. T2, № 2, 27-34.

24. Roldán-Gutiérrez, J.M., Ruiz-Jiménez, J., Luque de Castro, M.D. (2008). Ultrasound-assisted dynamic extraction of valuable compounds from aromatic plants and flowers as compared with steam distillation and superheated liquid extraction. - Talanta, №5, 1369-1375. https://doi.org/10.1016/j.talanta.2008.01.057

25. Rudenko O.S., Pesterev M. A., Talejsnik M. A. (i dr.). (2020). Vliyanie kavitacionnoj obrabotki plodoovoshchnogo syr'ya na organolepticheskie pokazateli konditerskih izdelij - Vse o myase, № 5, 304-308. https://doi.org/10.21323/2071-2499-2020-5S-304-308.

26. Tabatorovich A. N. (2018). Harakteristika fruktovyh i ovoshchnyh pyure-polufabrikatov dlya konditerskih izdelij. - Kachestvo produkcii, tekhnologij i obrazovaniya: Materialy XIII Mezhdunarodnoj nauchno-prakticheskoj konferencii, Magnitogorsk, 30 marta 2018 goda. – Magnitogorsk: Magnitogorskij gosudarstvennyj tekhnicheskij universitet im. G.I. Nosova, 2018, 145-153.

27. Tang J. et al. (2023). Mechanistic and synergistic aspects of ultrasonics and hydrodynamic cavitation for food processing. - Critical Reviews in Food Science and Nutrition, 1-22. https://doi.org/10.1007/s11947-010-0418-1

28. Tao Xia, Siquan Shi, Xiaochun Wan (2006). Impact of ultrasonic-assisted extraction on the chemical and sensory quality of tea infusion. - Journal of Food Engineering, 557-560. https://doi.org/10.1016/j.jfoodeng.2005.03.043б


Supplementary files

1. Сопроводительное письмо
Subject
Type Чистый текст
Download (1MB)    
Indexing metadata ▾
2. Рисунок 1
Subject
Type Материалы исследования
View (54KB)    
Indexing metadata ▾
3. Рисунок 2, Рисунок 3
Subject
Type Анализ данных
Download (20KB)    
Indexing metadata ▾
4. Рисунок 4, 5, 6
Subject
Type Анализ данных
Download (24KB)    
Indexing metadata ▾
5. Рисунок 7
Subject
Type Анализ данных
View (117KB)    
Indexing metadata ▾
6. Рисунок 8
Subject
Type Анализ данных
View (109KB)    
Indexing metadata ▾
7. Рисунок 9
Subject
Type Анализ данных
View (116KB)    
Indexing metadata ▾
8. Для слепого рецензирования
Subject
Type Other
Download (433KB)    
Indexing metadata ▾

Review

For citations:


Fedosenko T., Aksenova L., Pesterev M., Zaharova A., Patsyuk L. Cavitation as an Alternative Method of Physical Action to Improve the Flavor Profile of Confectionery Semi-Finished Products. Storage and Processing of Farm Products. 2024;32(1). (In Russ.) https://doi.org/10.36107/spfp.2024.1.501

Views: 265


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)